Optimality conditions for fractional minmax programming
نویسندگان
چکیده
منابع مشابه
Optimality Conditions and Duality in Minmax Fractional Programming, Part I: Necessary and Sufficient Optimality Conditions
The purpose of this paper is to develop a fairly large number of sets of global parametric sufficient optimality conditions under various generalized (F, b, φ, ρ, θ)univexity assumptions for a continuous minmax fractional programming problem involving arbitrary norms.
متن کاملGeneralized second-order parametric optimality conditions in semiinfinite discrete minmax fractional programming and second order (F
This paper deals with mainly establishing numerous sets of generalized second-order parametric sufficient optimality conditions for a semiinfinite discrete minmax fractional programming problem, while the results on semiinfinite discrete minmax fractional programming problem are achieved based on some partitioning schemes under various types of generalized second-order (F ,β, φ, ρ, θ, m)-univex...
متن کاملA Simple Approach to Optimality Conditions in Minmax Programming
Considering the minmax programming problem, lower and upper subdifferential optimality conditions, in the sense of Mordukhovich, are derived. The approach here, mainly based on the nonsmooth dual objects of Mordukhovich, is completely different from that of most of the previous works where generalizations of the alternative theorem of Farkas have been applied. The results obtained are closed to...
متن کاملSecond order duality for minmax fractional programming
In the present paper, two types of second order dual models are formulated for a minmax fractional programming problem. The concept of η-bonvexity/ generalized η-bonvexity is adopted in order to discuss weak, strong and strict converse duality theorems.
متن کاملNew Optimality Conditions for a Nondifferentiable Fractional Semipreinvex Programming Problem
In recent years, there has been an increasing interest in studying the develpoment of optimality conditions for nondifferentiable multiobjective programming problems. Many authors established and employed some different Kuhn and Tucker type necessary conditions or other type necessary conditions to research optimal solutions; see [1–27] and references therein. In [7], Lai and Ho used the Pareto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1984
ISSN: 0022-247X
DOI: 10.1016/0022-247x(84)90090-8